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Modelling of the amperometric biosensors based on carbon paste electrodes encrusted
with a single heterogeneous microreactor is analyzed. The microreactor was constructed
from CPC-silica carrier and was loaded with glucose oxidase. The model is based on non-
stationary diffusion–reaction equations containing a non-linear term related to the enzymatic
reaction. A homogenization process having an effective algorithm for the digital modelling
of the operation of the microreactor is proposed. The influence of the size, geometrical
form, and the position of a microreactor on the operation of biosensors are investigated.

1. Introduction

The goal of this research is to propose a model allowing us an effective digital
modelling, and also to investigate the influence of the geometry of a microreactor on
the operation of biosensors.

Recently, the amperometric biosensors based on carbon paste electrodes (CPEs)
encrusted with a single microreactor (MR) have been constructed for the determination
of glucose [3,4]. The MRs were prepared from CPC-silica carrier and were loaded
with glucose oxidase (GO), mediator and acceptor. A numerical model of the operation
of biosensors has been designed. The model is based on non-stationary diffusion
equations containing a non-linear term related to the enzymatic reaction. In the simplest
case, this term is given by the Michaelis–Menten equation:

du
dt

=
au

b+ u
, (1)

where a represents the maximal enzymatic rate, b the Michaelis constant, and u the
substrate concentration.

The problems in the modelling arise because of the possibility to solve analytically
such type of equations. In the digital modelling, the heterogeneous nature of MR, the
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determination of the boundary conditions, and the overload of calculation are the main
problems.

2. Definition and homogenization of the model

Let Ω be the area of the container (buffer solution) which was filled with some
substrate, and Ω0 the area of MR (Ω0 ⊂ Ω). Since the microreactor is constructed
from CPC-silica carrier (CPC) and is loaded with glucose oxidase (GO), let the whole
MR area Ω0 consist of two areas: Ω0C, the CPC-carrier, and Ω0G, the glucose oxidase
(Ω0 = Ω0C ∪ Ω0G) (figure 1). Let Γ be the whole surface of the container, and Γ1

only the base of the container.
The operation of biosensors includes the heterogeneous enzymatic process (reac-

tion) and diffusion. The stimulus of the reaction is MR, but the reaction performs only
in the area Ω0G of MR which was filled with glucose oxidase. The model consists
of a system of the following non-linear differential equations of the reaction–diffusion
type:

∂u

∂t
= d1∆u− f (u), (2)

∂ν

∂t
= d1∆ν + f (u), (3)

d1|Ω0G = d1|Ω\Ω0
= d, d1|Ω0C = 0, (4)

f |Ω0G = au/(b+ u), f |Ω0C = f |Ω\Ω0
= 0, (5)

where ∆ is the Laplace operator, d is the diffusion rate, u is the substrate concentration,
ν is the concentration of the reaction product, and t is time. The initial conditions
(t = 0) are

u|Ω0 = 0, u|Ω\Ω0
= u0, ν|Ω = 0. (6)

The boundary conditions (t > 0) are

∂u

∂n

∣∣∣∣
Γ

= 0,
∂ν

∂n

∣∣∣∣
Γ\Γ1

= 0, ν|Γ1 = 0, (7)

where (∂u/∂n)|Γ is a derivative of u with respect to the normal direction to the surface
Γ and (∂ν/∂n)|Γ\Γ1

is a derivative of ν in the normal direction to the surface Γ \ Γ1.
Due to the technology of the construction of MR, the number of cells which are

filled with glucose oxidase is very large, so an average size of a cell is much less than
the size of MR. The number of the cells and the geometrical shape of the cells cannot
be precisely defined. For that reason, it is hopeless to solve (2)–(7) analytically and
even to design an effective algorithm for the numerical calculations.

The model (2)–(7) was reduced by the homogenization process [1]. Let N be the
ratio of the volume of MR to the volume of the glucose oxidase which fills the MR cells
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Figure 1. A principal structure of a heterogeneous microreactor was constructed from CPC-silica carrier
and was loaded with glucose oxidase. The average size of a cell which is filled with glucose oxidase is

much less than the size of MR. The geometrical shapes of cells are not precisely defined.

(it is easy to calculate this ratio experimentally), i.e., N = volume(Ω0)/volume(Ω0G).
By using the homogenization process, the definition of the non-linear term related to
the enzymatic reaction was simplified and the model was reduced to

∂u

∂t
= d2∆u− 1

N
f (u), (8)

∂ν

∂t
= d2∆ν +

1
N
f (u), (9)

d2|Ω\Ω0
= d, d2|Ω0 = d3, (10)

f |Ω0 = au/(b+ u), f |Ω\Ω0
= 0, (11)

where u ≈ u, ν ≈ ν, and the value d3 of the diffusion rate in the area of MR depends
on the diffusion rate d, the geometry of MR, and the ratio N (see [1] and below).

The initial conditions and the boundary conditions are the same as above
((6) and (7), respectively).

3. Digital modelling of an experiment

The model (8)–(11), (6), (7) was used for digital modelling of the real experiment.
The container was modelled as a hemisphere of radius R and MR was modelled as a
hemisphere of radius R0. MR was placed on the center of the base of the container.
Approximately, a half of the volume of MR was loaded with the glucose oxidase (GO)
and the second half was the CPC-silica carrier (CPC) (i.e., the ratio N ≈ 2) (figure 1).
Due to the ratio N ≈ 2, the value d/4 was accepted as the homogenized diffusion rate
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d3 in the area of MR. Due to symmetry, the model in the spherical coordinates was
reduced to the system in two space variables.

The finite-difference technique [6] was used for discretisation of the model. We
introduced a non-uniform discrete grid to avoid an overload of calculations due to
the condition R0 � R. An exponentially increasing step of the grid was used in the
direction r, while a constant step was used in v and t directions.

A system of linear equations of implicit finite difference schemes was built as a
result of the difference approximation. To decrease the order of the system of linear
equations, the variable direction method [6] was used. The resulting system was solved
iteratively.

The current of the biosensor is measured in order to understand the dynamics of
reaction-diffusion in real experiment. The current was expressed as

I = mFd2

∫∫
Γ1

∂ν

∂n

∣∣∣∣
Γ1

dΓ1, (12)

where m = 2 is the number of electrons and F ≈ 9.65 × 104 C/mol is Faraday’s
constant. The calculated current of a biosensor was compared with the experimental
data.

The model (6)–(11) was used in the numerical experiments with the following
values of the parameters:

R = 1 cm, R0 = 0.0424 cm, d = 6.7× 10−6 cm2/s,

a = 4.4× 10−5 mol/cm3 s, b = 8.3 × 10−5 mol/cm3, (13)

u0 = 10−6 mol/cm3.

The model was realized in C/C++ programming language, compiled by the IBM
VisualAge C++ for OS/2 compiler and was tested in the environment of the operating
system OS/2 Warp 4.0. The program runs about 10 min to simulate a 100 s long
reaction on a PC based Intel Pentium II 350 MHz microprocessor.

4. Influence of the size, form, and position of a microreator

The dynamics of a current is considered in a parametrization of the radius of
MR, i.e., the dependence on the size of a microreactor is considered in the case where
the value of the diffusion rate d and the values of all other parameters are the same
as defined above in (13). MR was modelled as a hemisphere. The evolution of the
current for the radius of MR equal to 0.25R0, 0.5R0, R0, 1.5R0, and 2.0R0 (here R0

is the same as in (13)) is presented in figure 2.
One can see that the values of the current (including the maximal current) increase

if the radius of the microreactor increases and this growth is non-linear.
Several other geometrical shapes of MR differing from the hemisphere were used

to analyze the dependence of the operation of MR on the form of MR.
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Figure 2. The dependence of the current on the size of a microreactor solid. The microreactor was
modelled as one half of a sphere of radius r, where r is from the set {0.25R0, 0.5R0, R0, 1.5R0, 2.0R0}.

R0 and the values of all other parameters are defined in (13).

Firstly, MR was modelled as a hemi-ellipsoid of revoliution. In the Cartesian
coordinate system it is given by

x2

a2 +
y2

a2 +
z2

c2 6 1, z > 0, (14)

where a and c are semi-axes of the ellipsoid. The current was calculated for several
different values of a and c keeping the volume of every ellipsoid equal to the volume
of a sphere of radius R0 in order to have the same volume of MR as that used in real
experiments and in test calculations. Thus, the volume of MR was kept constant, and
only a geometrical form was changed. The following cases were analyzed:

(a) the semi-axis c is equal to the one-fourth of the semi-axis a;

(b) the semi-axis c is equal to the one-half of the semi-axis a;

(c) the semi-axis c is equal to the semi-axis a;

(d) the semi-axis c is twice as long as the semi-axis a;

(e) the semi-axis c is four times the semi-axis a.

The results of calculation are presented in figure 3. The form of MR appears to
be important for the current and it is especially important at the initial stage of the
reaction. Here the current grows faster as the area of the base of MR increases. Later
this importance decreases. The area of the base of MR is important for the maximal
current and the time moment of the occurrence of the maximal current. The maximal
value of the current increases and the time moment of its occurrence decreases as the
area of the base increases even if the volume of MR remains unchanged.
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Figure 3. The dynamics of the current in the case where the microreactor is a hemi-ellipsoid of revolution.
a and c are, respectively, the semi-axes of the ellipsoid in the x- and z-direction (in the Cartesian
coordinate system, see (14)). The volume of every ellipsoid is equal to the volume of a sphere of radius

R0.

A half of a torus was used as a second geometrical shape of MR. Let r be the
radius of a circle which draws the torus and R the radius of the leading circle of the
torus, i.e., R is the distance between the z-axis and the center of a circle which is rotated
around the z-axis. The center of the rotating circle is on the plane z = 0. Several
different values of both radiuses r and R were used to determine the dependence of
the current on this geometrical form of MR. The volume of every torus was equal
to the volume of a sphere of radius R0 (see (13)). Microreactors of the shape of the
upper part of a torus (z > 0) were used in calculation. In a special, case where R = 0,
MR is a half of a sphere. The dynamics of the current in the case where MR was
modelled as one-half of a torus is depicted in figure 4.

In all the numerical experiments discussed above, as well as in the physical
experiments, MR was placed on the base of a container. We investigated the dynamics
of the current when MR was lifted up. Since the current arises only when some
concentration of the reaction product is reached on the base of the container, the
current emerges with delay if MR is lifted up. The time of delay depends on an
altitude. This was the reason why we simulated the reaction for a longer time now
compared to the previous numerical experiments. The MR in the form of a sphere was
used in the analysis. The radius of MR to be lifted up was derived from R0 (R0 is
defined in (13)) to have the volume of MR the same as it was in the test experiments,
where MR was modelled as a hemisphere. Let h be the altitude of MR; more precisely,
h is the distance between the center of MR and the base of a container. The results
of numerical experiments for several values of altitude h are shown in figure 5. It
appears that the altitude of MR is very important for the dynamics of the current. The
delay increases and the current grows much slower if the altitude increases.
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Figure 4. The dynamics of the current in the case where the microreactor is a half of a torus. r is the
radius of the leading circle rotated to get the torus and R is the radius of that rotation around the z-axis
(in the Cartesian coordinate system). The center of the leading circle is on the plane z = 0. The volume

of every torus is equal to the volume of a sphere of radius R0 (see (13)).

Figure 5. The dynamics of the current in the case where the microreactor is lifted up from the base of the
container. MR is a sphere of radius r. The volume of the sphere is equal to the volume of a hemisphere

of radius R0 (see (13)). h is the distance between the center of MR and the base of a container.
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